Developing tools for assessing the Fluid Structure Interaction of Passive Adaptive Composite foils

نویسندگان

  • L. Marimon Giovannetti
  • J. Banks
  • S. W. Boyd
  • S. R. Turnock
چکیده

The study presents an experimental and numerical evaluation of bend-twist elastic coupling in composite passive-adaptive structures. Due to the lack of experimental validation in Fluid Structure Interaction (FSI) investigations, a full-field deformation of an aerofoil-shaped section under wind loading is measured. The experimental analysis is carried out at the University of Southampton 3.5 m × 2.4 m R. J. Mitchell wind tunnel using full-field non-contact measurement techniques such as high speed three dimensional Digital Image Correlation (DIC) and stereoscopic Particle Image Velocimetry (PIV). After assessing the validity and repeatability of the experiments, the study focuses on the development of a numerical FSI investigation that involves the use of a structural and a fluid solver to simulate the aero-elastic behaviour of composite tailored structures with different lay-up arrangements. The numerical analysis is developed as a design tool to allow the structure investigated to maximise bend-twist coupling under increased aerodynamic loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing Tools for Assessing Bend-twist Coupled Foils

For many applications, the ability of a foil to passively adapt to the experienced fluid loading could be advantageous, Nicholls-Lee & Turnock (2007): e.g. wind or tidal turbine blades, hydrofoils for sailing yachts, or marine propellers. Composite materials provide the opportunity to tailor the bend twist coupling of a structure to achieve these goals, Veers & Bir (1998). To allow such foils t...

متن کامل

Fluid-structure interaction studies on marine propeller

Composite propellers offer high damping characteristics and corrosion resistance when compared with metal propellers. But the design of a hybrid composite propeller with the same strength of metal propeller is the critical task. For this purpose, the present paper focusses on fluid-structure interaction analysis of hybrid composite propeller with Carbon/Epoxy, R-Glass/Epoxy and S2-Glass/Epoxy t...

متن کامل

Fluid-Structure Interaction of Vibrating Composite Piezoelectric Plates Using Exponential Shear Deformation Theory

In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...

متن کامل

Vibration analysis of a rectangular composite plate in contact with fluid

In this paper, modal analysis of the fluid-structure interaction has been investigated. Using classical laminated plate theory, a closed form solution for natural frequencies of FSI is extracted. For fluid, homogenous, inviscid and irrotational fluid flow is assumed. Then, a combined governing equation for the plate-fluid system is derived. In order to validate the equations and results, they a...

متن کامل

Comprehension of Passive Structure: Study of Children with and without Specific Language Impairment

Objectives: Specific language impaired children, despite being normal in cognitive and neurological characteristics, and also normal levels of hearing, experience multiple problems in syntax comprehension. This study compared the passive comprehension as one of Syntactic Structures in Persian-speaking typically developing children and Specific language impaired children. Methods: 10 children w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016